Overview Package Class Source Class tree Glossary
previous class      next class frames      no frames

Engine.Util


00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448
00449
00450
00451
00452
00453
00454
00455
00456
00457
00458
00459
00460
00461
00462
00463
00464
00465
00466
00467
00468
00469
00470
00471
00472
00473
00474
00475
00476
00477
00478
00479
00480
00481
00482
00483
00484
00485
00486
00487
00488
00489
00490
00491
00492
00493
00494
00495
00496
00497
00498
00499
00500
00501
00502
00503
00504
00505
00506
00507
00508
00509
00510
00511
00512
00513
00514
00515
00516
00517
00518
00519
00520
00521
00522
00523
00524
00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
00535
00536
00537
00538
00539
00540
00541
00542
00543
00544
00545
00546
00547
00548
00549
00550
00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00575
00576
00577
00578
00579
00580
00581
00582
00583
00584
00585
00586
00587
00588
00589
00590
00591
00592
00593
00594
00595
00596
00597
00598
00599
00600
00601
00602
00603
00604
00605
00606
00607
00608
00609
00610
00611
00612
00613
00614
00615
00616
00617
00618
00619
00620
00621
00622
00623
00624
00625
00626
00627
00628
00629
00630
00631
00632
00633
00634
00635
00636
00637
00638
00639
00640
00641
00642
00643
00644
00645
00646
00647
00648
00649
00650
00651
00652
00653
00654
00655
00656
00657
00658
00659
00660
00661
00662
00663
00664
00665
00666
00667
00668
00669
00670
00671
00672
00673
00674
00675
00676
00677
00678
00679
00680
00681
00682
00683
00684
00685
00686
00687
00688
00689
00690
00691
00692
00693
00694
00695
00696
00697
00698
00699
00700
00701
00702
00703
00704
00705
00706
00707
00708
00709
00710
00711
00712
00713
00714
00715
00716
00717
00718
00719
00720
00721
00722
00723
00724
00725
00726
00727
00728
00729
00730
00731
00732
00733
00734
00735
00736
00737
00738
00739
00740
00741
00742
00743
00744
00745
00746
00747
00748
00749
00750
00751
00752
00753
00754
00755
00756
00757
00758
00759
00760
00761
00762
00763
00764
00765
00766
00767
00768
00769
00770
00771
00772
00773
00774
00775
00776
00777
00778
00779
00780
00781
00782
00783
00784
00785
00786
00787
00788
00789
00790
00791
00792
00793
00794
00795
00796
00797
00798
00799
00800
00801
00802
00803
00804
00805
00806
00807
00808
00809
00810
00811
00812
00813
00814
00815
00816
00817
00818
00819
00820
00821
00822
00823
00824
00825
00826
00827
00828
00829
00830
00831
00832
00833
00834
00835
00836
00837
00838
00839
00840
00841
00842
00843
00844
00845
00846
00847
00848
00849
00850
00851
00852
00853
00854
00855
00856
00857
00858
00859
00860
00861
00862
00863
00864
00865
00866
00867
00868
00869
00870
00871
00872
00873
00874
00875
00876
00877
00878
00879
00880
00881
00882
00883
00884
00885
00886
00887
00888
00889
00890
00891
00892
00893
00894
00895
00896
00897
00898
00899
00900
00901
00902
00903
00904
00905
00906
00907
00908
00909
00910
00911
00912
00913
00914
00915
00916
00917
00918
00919
00920
00921
00922
00923
00924
00925
00926
00927
00928
00929
00930
00931
00932
00933
00934
00935
00936
00937
00938
00939
00940
00941
00942
00943
00944
00945
00946
00947
00948
00949
00950
00951
00952
00953
00954
00955
00956
00957
00958
00959
00960
00961
00962
00963
00964
00965
00966
00967
00968
00969
00970
00971
00972
00973
00974
00975
00976
00977
00978
00979
00980
00981
00982
00983
00984
00985
00986
00987
00988
00989
00990
00991
00992
00993
00994
00995
00996
00997
00998
00999
01000
01001
01002
01003
01004
01005
01006
01007
01008
01009
01010
01011
01012
01013
01014
01015
01016
01017
01018
01019
01020
01021
01022
01023
01024
01025
01026
01027
01028
01029
01030
01031
01032
01033
01034
01035
01036
01037
01038
01039
01040
01041
01042
01043
01044
01045
01046
01047
01048
01049
01050
01051
01052
01053
01054
01055
01056
01057
01058
01059
01060
01061
01062
01063
01064
01065
01066
01067
01068
01069
01070
01071
01072
01073
01074
01075
01076
01077
01078
01079
01080
01081
01082
01083
01084
01085
01086
01087
//=============================================================================
// Util.uc
// $Author: Mfox $
// $Date: 12/14/02 8:26p $
// $Revision: 51 $
//=============================================================================
//NEW: file

class Util extends Actor // never instantiated and extending Actor makes things easier
	native 
	abstract;

//=============================================================================
// Low-level utility functions, e.g. string parsing, formatting, generic math
// functions etc.
//=============================================================================

const DefaultGetFloatPrecision	= 3;

//=============================================================================
//@ string parsing/processing natives
//=============================================================================

native static final function string GetFloatString( float F, optional byte Precision/*=DefaultGetFloatPrecision*/ );
native static final function string GetVectorString( vector V, optional byte Precision/*=DefaultGetFloatPrecision*/ );
native static final function string GetRotatorString( rotator R, optional byte Precision/*=DefaultGetFloatPrecision*/ );
native static final function bool EndsInDigit( string S );
native static final function TruncateDigits( out string S );
native static final function StripSpaces( out string S, bool bStripLeading, bool bStripTrailing );
native static final function bool ValidNameString( string S );
native static final function bool ValidFloatString( string S );
native static final function bool ValidIntString( string S );
native static final function bool ValidByteString( string S );
native static final function bool ValidBoolString( string S );
native static final function int ParseString( out string S, out string SOut, optional string SDefault );
native static final function int ParseName( out string S, out name NOut, optional bool bAdd, optional name NDefault );
native static final function int ParseFloat( out string S, out float FOut, optional float FDefault );
native static final function int ParseInt( out string S, out int IOut, optional int IDefault );
native static final function int ParseByte( out string S, out byte BOut, optional byte BDefault );
native static final function int ParseBool( out string S, out byte BOut, optional byte BDefault );
native static final function int ParseVector( out string S, out vector VOut, optional vector VDefault );
native static final function string PadString( coerce string S, int PadLen, optional bool bRightJustify, optional string PadStr );

//=============================================================================
//@ string parsing/processing
//=============================================================================

//------------------------------------------------------------------------------
// Returns given time padded out to N characters.

static final function string GetPaddedTime( float Time, int Len, optional bool bRightJustify, optional string PadStr )
{
	return PadString( GetFloatString(Time), Len, bRightJustify, PadStr );
}

//------------------------------------------------------------------------------
// Converts time in seconds into a string representation (hh:mm:ss)

static final function string SecondsToTime( float TimeSeconds, optional bool bNoSeconds )
{
	local int Hours, Minutes, Seconds;
	local string HourString, MinuteString, SecondString;
	
	Seconds = int(TimeSeconds);
	Minutes = Seconds / 60;
	Hours   = Minutes / 60;
	Seconds = Seconds - (Minutes * 60);
	Minutes = Minutes - (Hours * 60);
	
	if( Seconds < 10 )
		SecondString = "0"$Seconds;
	else
		SecondString = string(Seconds);

	if( Minutes < 10 )
		MinuteString = "0"$Minutes;
	else
		MinuteString = string(Minutes);

	if( Hours < 10 )
		HourString = "0"$Hours;
	else
		HourString = string(Hours);

	if( bNoSeconds )
		return HourString$":"$MinuteString;
	else
		return HourString$":"$MinuteString$":"$SecondString;
}

//------------------------------------------------------------------------------

static final function string GetPhysicsString( Actor A )
{
	return EnumStr( enum'EPhysics', A.Physics );
}

//-----------------------------------------------------------------------------

static final function name GetNameSafe( Object O )
{
	if( O != None )
		return O.Name;
	else
		return 'NA';
}

//-----------------------------------------------------------------------------

static function string StripPathFromFileName( string InName )
{
	local string FileName;
	local int Index, InLen, LastPos;

	if( Instr( InName, "\\" ) != -1 )
	{
		// find last slash
		InLen = Len(InName);
		for( Index=0; Index<InLen; Index++ )
		{
			if( Mid(InName, Index, 1) == "\\" )
				LastPos = Index;
		}
		if( LastPos > 0 )
			LastPos++;

		FileName = Mid( InName, LastPos );

		return FileName;
	}
	else
	{
		return InName;
	}
}

//=============================================================================
//@ math
//=============================================================================

/*-----------------------------------------------------------------------------
Solves the quadratic formula given a, b, c (ax^2 + bx + c = 0) with the 
solution(s) given by:

	(-b +/- sqrt( b^2 - 4ac )) / 2a
	
Returns the number of solutions (0, 1 or 2)
*/

static final function int GetQuadraticSolutions( float a, float b, float c, out float Solution1, out float Solution2 )
{
	local float Radical;
	local float RadicalRoot;
	local float TwoA;
	
	// pathological cases
	if( a ~= 0 )
	{
		// bx + c = 0
		if( b ~= 0 )
		{
			// c = 0
			return 0;
		}
		else
		{
			Solution1 = -c / b;
			return 1;
		}
	}
		
	Radical = b*b - 4*a*c;

	if( Radical < 0 )
		return 0;
		
	if( Radical ~= 0 )
	{
		Solution1 = -b / (2*a);
		Solution2 = Solution1;
		return 1;
	}

	RadicalRoot = Sqrt( Radical );
	TwoA= 2*a;
	Solution1 = (-b + RadicalRoot) / TwoA;
	Solution2 = (-b - RadicalRoot) / TwoA;
	return 2;
}

//-----------------------------------------------------------------------------
// Returns true if the given vectors are aproximately equal.
//-----------------------------------------------------------------------------

static final function bool VectorAproxEqual( vector FirstVector, vector SecondVector )
{
	return ( ( FirstVector.x ~= SecondVector.x ) &&
			( FirstVector.y ~= SecondVector.y ) &&
			( FirstVector.z ~= SecondVector.z ) );
}

//-----------------------------------------------------------------------------
// Linearly scales between MinRangeVal/MaxRangeVal given a value and a 
// corresponding range.
//-----------------------------------------------------------------------------
// Val:				value to scale
// RangeMin:		minimum of range for value			(should be <= RangeMax)
// RangeMax:		maximum of range for value
// MinRangeVal:		value to return at min for range
// MaxRangeVal:		value to return at max for range
//-----------------------------------------------------------------------------
// Returns:			scaled value
//-----------------------------------------------------------------------------

static final function float ScaleLinear( float Val, float RangeMin, float RangeMax, float MinRangeVal, float MaxRangeVal )
{
	local float ReturnedVal;
	local float LinearScaleFactor;
	local float DeltaRange, TempFloat;

	if( Val <= RangeMin )
	{
		ReturnedVal = MinRangeVal;
	}
	else if( Val >= RangeMax )
	{
		ReturnedVal = MaxRangeVal;
	}
	else
	{
		if( MaxRangeVal < MinRangeVal )
		{
			TempFloat = MinRangeVal;
			MaxRangeVal = MinRangeVal;
			MinRangeVal = TempFloat;
			DeltaRange = (RangeMax - Val);
		}
		else
		{
			DeltaRange = (Val - RangeMin);
		}

    	LinearScaleFactor = (MaxRangeVal - MinRangeVal) / (RangeMax - RangeMin);
		ReturnedVal	= DeltaRange*LinearScaleFactor + MinRangeVal;
	}

	return ReturnedVal;
}

//-----------------------------------------------------------------------------

static final function ConformRot( out rotator Source, rotator Image, rotator Allowance )
{
	if( Abs(Source.Yaw   - Image.Yaw)   < Allowance.Yaw )   Source.Yaw   = Image.Yaw;
	if( Abs(Source.Pitch - Image.Pitch) < Allowance.Pitch ) Source.Pitch = Image.Pitch;
	if( Abs(Source.Roll  - Image.Roll)  < Allowance.Roll )  Source.Roll  = Image.Yaw;
}

//-----------------------------------------------------------------------------

static final function IncrementRotatorParam( out int Param, int Amount )
{
	Param = (Param + Amount) & 0xFFFF;
}

//-----------------------------------------------------------------------------

static final function bool VectAproxEqual( vector v1, vector v2, float Allowance )
{
	return (	Abs(v1.x-v2.x) < Allowance && 
				Abs(v1.y-v2.y) < Allowance &&
				Abs(v1.z-v2.z) < Allowance );
}

//------------------------------------------------------------------------------
// Sets given rotation parameter (yaw, pitch, roll) to 0 or 32768 depending on
// which value is closer to the original value.

static final function ZeroRotParam( out int Val )
{
	Val = Val & 0xFFFF;

	if( Val < 16384 || Val >= 49152 )
	{
		Val = 0;
	}
	else
	{
		Val = 32768;
	}
}

//------------------------------------------------------------------------------
// Sets given rotation parameter (yaw, pitch, roll) to given value or given value
// plus 32768 depending on which is closer to the original value.

static final function SetLandedRotParam( out int Val, int DesiredVal )
{
	// normalize angle
	Val = Val & 0xFFFF;

	if( abs(Val - DesiredVal) < 16384 || abs(Val - DesiredVal) >= 49152 )
	{
		Val = DesiredVal;
	}
	else
	{
		Val = DesiredVal + 32768;
	}

	// normalize angle
	Val = Val & 0xFFFF;
}

//-----------------------------------------------------------------------------

static final function bool RotationEquivalent( Rotator FirstRotation, Rotator SecondRotation, float RotationComponentTolerance )
{
	local bool bRotationEquivalent;
	local Rotator RotationDifference, AbsRotationDifference;

	RotationDifference = Normalize( SecondRotation - FirstRotation );
	AbsRotationDifference.Roll = abs( RotationDifference.Roll );
	AbsRotationDifference.Pitch = abs( RotationDifference.Pitch );
	AbsRotationDifference.Yaw = abs( RotationDifference.Yaw );
			
	if( ( AbsRotationDifference.Roll <= RotationComponentTolerance ) &&
		( AbsRotationDifference.Pitch <= RotationComponentTolerance ) &&
		( AbsRotationDifference.Yaw <= RotationComponentTolerance ) )
	{
		bRotationEquivalent = true;
	}

	return bRotationEquivalent;
}

//------------------------------------------------------------------------------
// Returns vector perpendicular to given vector, ignoring z component.

static final function vector PerpendicularXY( vector V )
{
	local vector VOut;

	VOut.x = -V.y;
	VOut.y =  V.x;

	return VOut;
}

//------------------------------------------------------------------------------
// Calculated the closest point on the given Actor's collision cylinder
// to the given location.

static final function vector CalcClosestCollisionPoint( Actor Other, vector Loc )
{
	// ripped from UPrimitive::LineCheck.
	// I really should simply expose UPrimitive::LineCheck to UnrealScript instead.
	// This probably can be simplified more since we are assuming the end point is 
	// the colliding actor's location.

	local vector HitNormal;

	local vector Start, End;
	local vector Extent;

	local float TopZ, BotZ;

	local float T0, T1, T;

	local float Kx, Ky;

	local float Vx, Vy;
	local float A, B, C;
	local float Discrim;

	local float Dir;

	local float R2A;

	local float ResultTime;

	if( Other == None )
		return vect(0,0,0);

	HitNormal = vect(0,0,0);

	Start = Loc;
	End = Other.Location;

	Extent.X = Other.CollisionRadius;
	Extent.Y = Other.CollisionRadius;
	Extent.Z = Other.CollisionHeight;

	TopZ = End.Z + Extent.Z;
	BotZ = End.Z - Extent.Z;

	// Clip to top of cylinder.
	T0 = 0.0; 
	T1 = 1.0;
	if( Start.Z > TopZ && End.Z < TopZ )
	{
		T = (TopZ - Start.Z) / (End.Z - Start.Z);
		if( T > T0 )
		{
			T0 = FMax( T0, T );
			HitNormal = vect(0,0,1);
		}
	}
	else if( Start.Z < TopZ && End.Z > TopZ )
	{
		T1 = FMin( T1, (TopZ - Start.Z) / (End.Z - Start.Z) );
	}

	// Clip to bottom of cylinder.
	if( Start.Z < BotZ && End.Z > BotZ )
	{
		T = (BotZ - Start.Z) / (End.Z - Start.Z);
		if( T > T0 )
		{
			T0 = FMax( T0, T );
			HitNormal = vect(0,0,-1);
		}
	}
	else if( Start.Z > BotZ && End.Z < BotZ )
	{
		T1 = FMin( T1, (BotZ - Start.Z) / (End.Z - Start.Z) );
	}

	// Reject.
	if( T0 >= T1 )
		return vect(0,0,0);

	// Test setup.
	Kx = Start.X - End.X;
	Ky = Start.Y - End.Y;

	// 2D circle clip about origin.
	Vx        = End.X - Start.X;
	Vy        = End.Y - Start.Y;
	A         = Vx*Vx + Vy*Vy;
	B         = 2.0 * (Kx*Vx + Ky*Vy);
	C         = Kx*Kx + Ky*Ky - Square(Extent.X);
	Discrim   = B*B - 4.0*A*C;

	// If already inside sphere, oppose further movement inward.
	if( C < Square(1.0) && Start.Z > BotZ && Start.Z < TopZ )
	{
		Dir = ((End - Start) * vect(1,1,0)) dot (Start - End);
		if( Dir < -0.1 )
		{
			HitNormal = Normal((Start - End) * vect(1,1,0));
			return Start;
		}
		else
		{
			return vect(0,0,0);
		}
	}

	// No intersection if discriminant is negative.
	if( Discrim < 0 )
	{
		return vect(0,0,0);
	}

	// Unstable intersection if velocity is tiny.
	if( A < Square(0.0001) )
	{
		// Outside.
		if( C > 0 )
		{
			return vect(0,0,0);
		}
	}
	else
	{
		// Compute intersection times.
		Discrim	= Sqrt(Discrim);
		R2A		= 0.5/A;
		T1		= FMin( T1, (Discrim-B) * R2A );
		T		= -(Discrim+B) * R2A;
		if( T > T0 )
		{
			T0 = T;
			HitNormal	= (Start + (End-Start)*T0 - End);
			HitNormal.Z	= 0;
			HitNormal	= Normal(HitNormal);
		}
		if( T0 >= T1 )
		{
			return vect(0,0,0);
		}
	}
	ResultTime = FClamp( (T0 - 0.001), 0.0, 1.0 );
	return Start + (End-Start) * ResultTime;
}

//-----------------------------------------------------------------------------
// GetDistanceBetweenCylinders:
//
// Return the distance between the 2 given cylinders (origin, radius and
// half-height for each). Can possibly return a negative value?
//-----------------------------------------------------------------------------

static final function float GetDistanceBetweenCylinders(
		vector FirstOrigin, float FirstRadius, float FirstHalfHeight,
 		vector SecondOrigin, float SecondRadius, float SecondHalfHeight )
{
	local float DistanceBetween, MinDistance;
	local vector OriginDifference, OriginDifferenceNormal;
	local vector FirstSurfaceLocation, SecondSurfaceLocation;
		
	//Log( "::Util::GetDistanceBetweenCylinders" );
	OriginDifference = SecondOrigin - FirstOrigin;
	OriginDifference.z = 0;
	OriginDifferenceNormal = Normal( OriginDifference );
		
	FirstSurfaceLocation = FirstOrigin + ( OriginDifferenceNormal * FirstRadius );
	SecondSurfaceLocation = SecondOrigin - ( OriginDifferenceNormal * SecondRadius );
	
	//Log( "::Util::GetDistanceBetweenCylinders: SecondOrigin.z - SecondHalfHeight: " $ SecondOrigin.z - SecondHalfHeight );
	//Log( "::Util::GetDistanceBetweenCylinders: FirstOrigin.z + FirstHalfHeight:   " $ FirstOrigin.z + FirstHalfHeight );
	//Log( "::Util::GetDistanceBetweenCylinders: FirstOrigin.z - FirstHalfHeight:   " $ FirstOrigin.z - FirstHalfHeight );
	//Log( "::Util::GetDistanceBetweenCylinders: SecondOrigin.z + SecondHalfHeight: " $ SecondOrigin.z + SecondHalfHeight );

	if( ( SecondOrigin.z - SecondHalfHeight ) > ( FirstOrigin.z + FirstHalfHeight ) )
	{
		//1st cylinder is above 2nd cylinder 
		//distance is taken from closest point on bottom of 1st cylinder to 
		//closest point on top of 2nd cylinder (within the connecting plane)
		SecondSurfaceLocation.z -= SecondHalfHeight;
		FirstSurfaceLocation.z += FirstHalfHeight;
		DistanceBetween = VSize( FirstSurfaceLocation - SecondSurfaceLocation );
		//Log( "::Util::GetDistanceBetweenCylinders Case 1" );
	}
	else if( ( FirstOrigin.z - FirstHalfHeight ) >	( SecondOrigin.z + SecondHalfHeight ) )
	{
		//1st cylinder is below 2nd cylinder 
		//distance is taken from closest point on top of 1st cylinder to 
		//closest point on bottom of 2nd cylinder (within the connecting plane)
		FirstSurfaceLocation.z -= FirstHalfHeight;
		SecondSurfaceLocation.z += SecondHalfHeight;
		DistanceBetween = VSize( FirstSurfaceLocation - SecondSurfaceLocation );
		//Log( "::Util::GetDistanceBetweenCylinders Case 2" );
	}
	else
	{
		//cylinders are at least partly on the same horizontal plane
		//distance is the distance between the surface locations
		//projected down to the z = 0 plane
		FirstSurfaceLocation.z = 0;
		SecondSurfaceLocation.z = 0;
		DistanceBetween = VSize( FirstSurfaceLocation - SecondSurfaceLocation );
		//Log( "::Util::GetDistanceBetweenCylinders: DistanceBetween: " $ DistanceBetween );

		//if the collision cylinders overlap, DistanceBetween is -ve
		if( VSize( OriginDifference ) < ( FirstRadius + SecondRadius ) )
		{
			DistanceBetween = -DistanceBetween;
		}
		//Log( "::Util::GetDistanceBetweenCylinders Case 3" );
	}
	
	//Log( "::Util::GetDistanceBetweenCylinders FirstOrigin: " $ FirstOrigin );
	//Log( "::Util::GetDistanceBetweenCylinders FirstRadius: " $ FirstRadius );
	//Log( "::Util::GetDistanceBetweenCylinders FirstHalfHeight: " $ FirstHalfHeight );
	//Log( "::Util::GetDistanceBetweenCylinders SecondOrigin: " $ SecondOrigin );
	//Log( "::Util::GetDistanceBetweenCylinders SecondRadius: " $ SecondRadius );
	//Log( "::Util::GetDistanceBetweenCylinders SecondHalfHeight: " $ SecondHalfHeight );
	//Log( "::Util::GetDistanceBetweenCylinders OriginDifference: " $ OriginDifference );
	//Log( "::Util::GetDistanceBetweenCylinders OriginDifferenceNormal: " $ OriginDifferenceNormal );
	//Log( "::Util::GetDistanceBetweenCylinders FirstSurfaceLocation : " $ FirstSurfaceLocation  );
	//Log( "::Util::GetDistanceBetweenCylinders SecondSurfaceLocation: " $ SecondSurfaceLocation );
	//Log( "::Util::GetDistanceBetweenCylinders returning " $ DistanceBetween );

	return DistanceBetween;
}

//-----------------------------------------------------------------------------
// GetDistanceBetweenActors:
// Wrapper for GetDistanceBetweenCylinders for 2 actors.
//-----------------------------------------------------------------------------

static final function float GetDistanceBetweenActors( Actor A1, Actor A2 )
{
	return GetDistanceBetweenCylinders( A1.Location, A1.CollisionRadius, A1.CollisionHeight,
										A2.Location, A2.CollisionRadius, A2.CollisionHeight );
}

/*-----------------------------------------------------------------------------
Returns true if the given line (between LineStart and LineEnd) intersects with
the polygon defined by the vertices in Points and sets IntesectionPoint 
accordingly. 

The vertices in Points are assumed to be in the same plane and the polygon is 
assumed to be convex.
*/

static native final function bool LineConvexPolygonIntersection( vector LineStart, vector LineEnd, array<vector> Points, out vector IntersectionPoint );
static native final function float PointPlaneDistance( vector Point, vector PlaneBase, vector PlaneNormal );
static native final function bool LineBoxIntersection( vector LineStart, vector LineEnd, vector BoxMin, vector BoxMax );

/*-----------------------------------------------------------------------------
Gets the intersection of a sphere centered at SphereCenter with radius
SphereRadius and a line with endpoints at LinePointU and LinePointV. The
function returns true if an intersection occurs. Additionally, the out
parameters IntersectionPoint1 and IntersectionPoint1 are set to the distance
of the intersection points from LinePointU. Otherwise, the function returns
false and leaves IntersectionPoint1 and IntersectionPoint1 unchanged. 

Algorithm stolen from graphics gems I.
*/

static final function bool GetSphereIntersection( out float IntersectionDistance1, out float IntersectionDistance2, vector SphereCenter, float SphereRadius, vector LinePosition, vector LineNormal )
{
	local vector G;
	local float a, b, c;
	local int nIntersections;
	
	G = LinePosition - SphereCenter;
	
	a = LineNormal dot LineNormal;
	b = 2 * ( LineNormal dot G );
	c = ( G dot G ) - Square( SphereRadius );

	nIntersections = class'Util'.static.GetQuadraticSolutions( a, b, c, IntersectionDistance1, IntersectionDistance2 );

	return( nIntersections > 0 );
}

//-----------------------------------------------------------------------------

static final function bool IsLocationInActorSphere( 
	Actor OriginActor,
	vector TestLocation,
	float SphereRadius )
{
	//Log( "::Util::IsLocationInActorSphere" );
	return IsLocationInSphere( OriginActor.Location, SphereRadius, TestLocation );
}

//-----------------------------------------------------------------------------

static final function bool IsLocationInSphere( 
	vector SphereOrigin,
	float SphereRadius,
	vector TestLocation	)
{
	local bool bLocationInActorSphere;
	local vector Difference;
	local float ObjectDistance;
	
	//Log( "::Util::IsLocationInSphere" );
	Difference = TestLocation - SphereOrigin;
	ObjectDistance = VSize( Difference );
	
	//Log( "		ObjectDistance " $ ObjectDistance );
	//Log( "		SphereRadius " $ SphereRadius );
	//is the pawn close enough to the Item location
	bLocationInActorSphere = ( ObjectDistance <= SphereRadius );
	
	//Log( "::Util::IsLocationInSphere returning " $ bLocationInActorSphere );
	return bLocationInActorSphere;
}

//-----------------------------------------------------------------------------

static final function bool IsLocationInRadius( 
	vector Origin,	
	float Radius,
	vector TestLocation )
{
	local vector Difference;
	local float ObjectDistance;
	
	//Log( "::Util::IsLocationInRadius" );
	Difference = TestLocation - Origin;
	Difference .Z = 0;
	ObjectDistance = VSize( Difference );
	//Log( "		ObjectDistance " $ ObjectDistance );
	//Log( "		Radius " $ Radius );
	//is the pawn close enough to the Item location
	return ( ObjectDistance <= Radius );
}

//-----------------------------------------------------------------------------

static final function bool IsLocationInCylinder( 
	vector CylinderOrigin,
	float CylinderRadius,
	float CylinderHeight,
	vector TestLocation )
{
	local bool bLocationInCylinder;
	
	//Log( "::Util::IsLocationInCylinder" );
	if( ( TestLocation.Z >= ( CylinderOrigin.Z - CylinderHeight ) ) &&
			( TestLocation.Z <= ( CylinderOrigin.Z + CylinderHeight ) ) )
	{
		bLocationInCylinder = IsLocationInRadius( CylinderOrigin, CylinderRadius, TestLocation );
	}

	return bLocationInCylinder;
}

//-----------------------------------------------------------------------------

static final function bool IsLocationInActorCylinder( Actor OriginActor, vector TestLocation )
{
	//Log( "::Util::IsLocationInActorCylinder" );
	return IsLocationInCylinder( 
				OriginActor.Location,
				OriginActor.CollisionRadius, 
				OriginActor.CollisionHeight, 
				TestLocation );
}

//-----------------------------------------------------------------------------

static final function bool DoCylindersIntersect( vector Location1, float CollisionRadius1, float CollisionHeight1, vector Location2, float CollisionRadius2, float CollisionHeight2 )
{
	// x/y test
	if( VSize2D( Location1 - Location2 ) > (CollisionRadius1 + CollisionRadius2) )
		return false;
	// z tests
	if( (Location1.Z - CollisionHeight1) > (Location2.Z + CollisionHeight2) )
		return false;
	if( (Location1.Z + CollisionHeight1) < (Location2.Z - CollisionHeight2) )
		return false;
		
	return true;
}

//-----------------------------------------------------------------------------

static final function bool DoActorCylindersIntersect( Actor A1, Actor A2 )
{
	return DoCylindersIntersect( A1.Location, A1.CollisionRadius, A1.CollisionHeight, A2.Location, A2.CollisionRadius, A2.CollisionHeight );
}

//-----------------------------------------------------------------------------
// Shifts the given Actor's location by the given Offset and shifts the
// actor's mesh in the opposite direction (so the Actor doesn't appear to move).
// Useful with carcasses to line up CC with the mesh for example.

static final function bool ShiftCollisionCylinder( Actor SourceActor, float HeightChange )
{
	SourceActor.PrePivot.Z -= HeightChange;
	return SourceActor.SetLocation( SourceActor.Location + vect(0,0,1) * HeightChange );
}

//-----------------------------------------------------------------------------
// Sets the given Actor's collision cylinder to the given Radius, Height then
// shifts the actor's mesh in the opposite direction so this remains lined up
// with the bottom of the CC and sets the CC location so that the bottom of
// the CC remains at the same height. Assumes that the new CC can fit in the 
// current (adjusted) location.

static final function bool AdjustCollisionSize( Actor SourceActor, float NewRadius, float NewHeight )
{
	local bool bResult;
	local float OldHeight, OldRadius, OldPrePivotZ;

	// have to adjust collision size first or setlocation could fail
	bResult = false;
	OldHeight = SourceActor.CollisionHeight;
	OldRadius = SourceActor.CollisionRadius;
	OldPrePivotZ = SourceActor.PrePivot.Z;
	if( SourceActor.SetCollisionSize( NewRadius, NewHeight ) )
	{
		bResult = ShiftCollisionCylinder( SourceActor, (NewHeight - OldHeight) );
		if( !bResult )
		{
			SourceActor.SetCollisionSize( OldRadius, OldHeight ); 
			SourceActor.PrePivot.Z = OldPrePivotZ;
		}
	}

	return bResult;
}

//-----------------------------------------------------------------------------
// Determines whether or not the given actor will telefrag another Actor  if
// it is placed at the given location.
// (Note: This is not the fastest function in the world.)
//------------------------------------------------------------------------------

static final function bool ActorFits( Actor MovingActor, vector DesiredLocation, float ActorFitsRadius )
{
	local Actor IterA;
	local float RadiusDiff, HeightDiff;
	local vector Diff;
	local bool bFits;

	// Filter out bogus data.
	if( MovingActor == None )
	{
		return false;	// Should this return true?  Since a non-existance Actor could theretically fit anywhere - if you could move it.
	}

	bFits = true;

	// Check all blocking actors for overlapping collision cylinders.
	if( MovingActor.bBlockActors || MovingActor.bBlockPlayers )
	{
		foreach MovingActor.RadiusActors(class'Actor', IterA, ActorFitsRadius, DesiredLocation )
		{
			if( IterA != MovingActor && !IterA.IsA( 'Mover' ) )
			{
				if( IterA.bBlockActors || IterA.bBlockPlayers )
				{
					Diff = IterA.Location - DesiredLocation;
					HeightDiff = Diff.z;
					Diff.z = 0;
					RadiusDiff = VSize( Diff );

					if
					(	IterA.CollisionRadius + MovingActor.CollisionRadius >= RadiusDiff	// Using >= to be safe.  > is probably sufficient.
					&&	IterA.CollisionHeight + MovingActor.CollisionHeight >= HeightDiff
					)
					{
						bFits = false;
						break;	// No need to go on.
					}
				}
			}
		}
	}

	return bFits;
}

//=============================================================================
//@ randomness
//=============================================================================

//-----------------------------------------------------------------------------
// Randomly modifies the given float by +/- given %.
//
// e.g. PerturbFloatPercent( 100.0, 20.0) will return a value in 80.0..120.0
//-----------------------------------------------------------------------------

static final function float PerturbFloatPercent( float Num, float PerturbPercent )
{
	local float Perturb;

	Perturb = 2.0*PerturbPercent / 100.0;

	return Num + Num * ( ( Perturb * FRand() - Perturb / 2.0 ) );
}

//-----------------------------------------------------------------------------
// Randomly modifies the given int by +/- given #.
//
// e.g. PerturbInt( 100, 20) will return a value in 80..120
//-----------------------------------------------------------------------------

static final function int PerturbInt( int Num, int PerturbPlusMinus )
{
	return Num + Rand( 2*PerturbPlusMinus +  1 ) - PerturbPlusMinus;
}

//-----------------------------------------------------------------------------
// Randomize given rotator param by +/- the given range, wrapping if necessary.
//-----------------------------------------------------------------------------

static final function RandomizeRotatorParam( out int Param, int PerturbMin, int PerturbMax )
{
	//Param = (Param + Rand( 2*(PerturbMax-PerturbMin) + 1 ) - (PerturbMax-PerturbMin)) & 0xFFFF;

	if( FRand() < 0.5 )
		Param = (Param - Rand( PerturbMax-PerturbMin ) - PerturbMin) & 0xFFFF;
	else
		Param = (Param + Rand( PerturbMax-PerturbMin ) + PerturbMin) & 0xFFFF;
}

//-----------------------------------------------------------------------------
// Randomize a rotator's members +/- over the given range.
//-----------------------------------------------------------------------------

static final function RandomizeRotator( 
	out rotator TargetRotator,
	int RollPerturbMin, 
	int RollPerturbMax, 
	int YawPerturbMin, 
	int YawPerturbMax, 
	int PitchPerturbMin,
	int PitchPerturbMax )
{
/* testing
	local rotator OldRotator;
	local int YawChange, PitchChange;

	OldRotator = TargetRotator;

	Log( "RandomizeRotator" );
	Log( "  RollPerturbMin:  " $ RollPerturbMin );
	Log( "  RollPerturbMax:  " $ RollPerturbMax );
	Log( "  YawPerturbMin:   " $ YawPerturbMin );
	Log( "  YawPerturbMax:   " $ YawPerturbMax );
	Log( "  PitchPerturbMin: " $ PitchPerturbMin );
	Log( "  PitchPerturbMax: " $ PitchPerturbMax );
*/

	RandomizeRotatorParam( TargetRotator.Roll,  RollPerturbMin, RollPerturbMax  );
	RandomizeRotatorParam( TargetRotator.Yaw,   YawPerturbMin, YawPerturbMax );
	RandomizeRotatorParam( TargetRotator.Pitch, PitchPerturbMin, PitchPerturbMax );

/* testing
	YawChange	= TargetRotator.Yaw - OldRotator.Yaw;
	PitchChange	= TargetRotator.Pitch - OldRotator.Pitch;

	if( YawChange > 32768 )
		YawChange = 65535 - YawChange;
	if( PitchChange > 32768 )
		PitchChange = 65535 - PitchChange;

	Log( "Yaw in:    " $ OldRotator.Yaw );
	Log( "Yaw out:   " $ TargetRotator.Yaw );
	Log( "Change:    " $ YawChange );
	
	Log( "Pitch in:  " $ OldRotator.Pitch );
	Log( "Pitch out: " $ TargetRotator.Pitch );
	Log( "Change:    " $ PitchChange );
*/
}

//-----------------------------------------------------------------------------
// Calculate a direction vector based on a general direction, and the amount of
// spread (in degrees) allowed.
//-----------------------------------------------------------------------------

static final function vector CalcSprayDirection( rotator Direction, float Spread )
{
	local float Radius, ZDelta, YDelta;
	local vector X, Y, Z, Offset;

	Radius = Tan( Spread / 2.0 * DegreesToRadians );
	ZDelta = Radius - (2 * Radius * FRand());
	YDelta = Radius - (2 * Radius * FRand());
	
	GetAxes( Direction, X, Y, Z );
	
	Offset = (ZDelta * Z) + (YDelta * Y);
	
	return vector(Direction) + Offset;
}

//=============================================================================
//@ tracing
//=============================================================================

//-----------------------------------------------------------------------------
// Recursively traces until we hit something (BSP or Actor). Returns hit 
// BSP/Actor or None if reached limit.
//------------------------------------------------------------------------------

native static final function Actor TraceRecursive
(	Actor			Instance,					// instance Actor to call trace from (pass in any Actor - Self is usually a good choice)
	out vector		HitLocation,				// location of hit BSP/Actor
	out vector		HitNormal,					// hit normal
	vector			StartLoc,					// location to start tracing from
	optional bool 	bTraceActors,				// (false) whether to trace actors
	optional float	TraceInterval,				// (500) how far to trace per iteration
	optional vector	TraceDirection,				// (down) direction to trace in
	optional float	TraceLimit,					// (infinite) how far to trace before giving up
	optional vector Extent,						// (0,0,0) extents
	optional int	TraceFlags,					// (TRACE_AllColliding | TRACE_ProjTargets) trace flags
	optional bool	bTraceVisibleNonColliding	// (false) whether to trace visible, non-colliding actors (e.g. debug traces)
);

//-----------------------------------------------------------------------------
// Recursively calls SingleLineCheck until we hit something.
//-----------------------------------------------------------------------------

native static final function bool RSLC
(	out CheckResult	Hit,
	Actor			Source,
	vector			Start,
	optional vector	TraceDirection,
	optional float	TraceInterval,
	optional float	TraceLimit,
	optional int	TraceFlags,
	optional vector	Extent
);

/*-----------------------------------------------------------------------------
GetHitActorInfo:

Traces from given PlayerPawn's eyes along his ViewRotation and returns what
was hit first along with the corresponding HitLocation and HitNormal.

If bTraceVisibleNonColliding is set trace will also "hit" visible actors which 
aren't normally hit because they aren't in the collision hash (don't collide)
or because ShouldTrace returns false (e.g. pickups). This is only really useful
for debug traces and should be avoided otherwise at this can be slow.
*/

static final function Actor GetHitActorInfo( Controller C, out vector HitLocation, out vector HitNormal, optional bool bTraceVisibleNonColliding )
{					 
	local vector StartTrace;
	local Actor HitActor;

	if( C != None )
	{
		if( C.Pawn != None )
		{
			StartTrace		= C.Pawn.Location; 
			StartTrace.Z   += C.Pawn.BaseEyeHeight;
		}
		else
		{
			StartTrace		= vect(0,0,0);
		}

		HitActor = TraceRecursive( C, HitLocation, HitNormal, StartTrace, true, 0.0, vector(C.GetViewRotation()), , , , bTraceVisibleNonColliding );
	}

	return HitActor;		
}

//-----------------------------------------------------------------------------

static final function Actor GetHitActor( Controller C, optional bool bTraceVisibleNonColliding )
{					 
	local vector HitLocation, HitNormal;

	return GetHitActorInfo( C, HitLocation, HitNormal, bTraceVisibleNonColliding );
}

//-----------------------------------------------------------------------------

static final function bool TraceFromActor( 
		Actor GivenActor,
		vector DestinationPoint,
		optional bool bCollideActors,
		optional bool bUseExtents )
{
	local vector TraceHitLocation, TraceHitNormal, GivenActorExtents;
	local Actor TraceHitActor;
	//Log( "::Util::TraceFromActor" );
	
	if( bUseExtents )
	{
		GivenActorExtents.x = GivenActor.CollisionRadius;
		GivenActorExtents.y = GivenActor.CollisionRadius;
		GivenActorExtents.z = GivenActor.CollisionHeight;
	}

	TraceHitActor = GivenActor.Trace( TraceHitLocation, TraceHitNormal,
			DestinationPoint, GivenActor.Location,  bCollideActors, GivenActorExtents );
	
	if( TraceHitActor != none )
	{
		//Log( "::Util::TraceFromActor TraceHitActor: " $ TraceHitActor );
	}
	
	return TraceHitActor != None;
}

//-----------------------------------------------------------------------------

static function vector GetLocationAtActor( Actor TargetActor, float SourceCollisionRadius, float SourceCollisionHeight )
{
	local vector ReturnedLocation;
	
	ReturnedLocation = TargetActor.Location;
	ReturnedLocation.Z += (SourceCollisionHeight - TargetActor.CollisionHeight) + CCFloatHeight;
	if( SourceCollisionRadius > TargetActor.CollisionRadius )
		ReturnedLocation.Z += (SourceCollisionRadius - TargetActor.CollisionRadius);
		
	return ReturnedLocation;
}

//-----------------------------------------------------------------------------

//#endif

defaultproperties
{
     UseReticleOnEvents(0)="UseReticleText"
     UseReticleOnEvents(1)="UseReticleCorners"
     UseReticleOnEvents(2)="UseReticleTopBars"
     ProximityReticleOnEvents(0)="ProximityReticleCorners"
     ProximityReticleOnEvents(1)="ProximityReticleTopBars"
}

Overview Package Class Source Class tree Glossary
previous class      next class frames      no frames
Class file time: sk 3-1-2016 10:38:40.000 - Creation time: sk 3-1-2016 10:48:43.673 - Created with UnCodeX